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Abstract. Advanced finite elements are proposed for the mechanical analysis of heterogeneous
materials. The approximation quality of these finite elements can be controlled by a variable
order of B-spline shape functions. An element-based formulation is developed such that the
finite element problem can iteratively be solved without storing a global stiffness matrix. This
memory saving allows for an essential increase of problem size. The heterogeneous material is
modeled by projection onto a uniform, orthogonal grid of elements. Conventional, strictly grid-
based finite element models show severe oscillating defects in the stress solutions at material
interfaces. This problem is cured by the extension to multiphase finite elements. This concept
enables to define a heterogeneous material distribution within the finite element. This is possible
by a variable number of integration points to each of which individual material properties can
be assigned. Based on an interpolation of material properties at nodes and further smooth
interpolation within the finite elements, a continuous material function is established. With both,
continuous B-spline shape function and continuous material function, also the stress solution
will be continuous in the domain. The inaccuracy implied by the continuous material field is
by far less defective than the prior oscillating behaviour of stresses. One- and two-dimensional
numerical examples are presented.
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1 INTRODUCTION

1.1 Background of grid-based modeling

Grid-based procedures for the finite element analysis of concrete as heterogeneous material
on the mesoscale have been presented in [4, 5]. These procedures include geometrical model-
ing of the heterogeneous material, efficient grid-based notation of the finite element problem
and the multigrid method as fast iterative solver method to the defined problem. These priorly
proposed methods are efficient in memory demand as well as computational cost and therefore
are appropriate to analyze the material behaviour of heterogeneous solids by a very large num-
ber of degrees of freedom [5, 8]. The effective elastic properties of various complex mesoscale
geometries of concrete models were computed and verified by experimental results [5]. How-
ever, while the application of grid-based models, also labeled as pixel or voxel models, is quite
comfortable and efficient for geometrical modeling of heterogeneous solids and concerning
numerical methods, the inadequate grid-based representation of inclusion interfaces leads to
severely defective stress solutions. Besides other possible solutions [7], the present approach of
multiphase B-spline finite elements is introduced to tackle this problem.

1.2 B-spline finite elements and multiphase finite elements

The present paper introduces a combination of B-spline finite elements with the multiphase
finite element concept. In the following the major references for the development of this ap-
proach are introduced. The mathematical theory of B-spline finite elements is prepared in
Höllig [10]. It includes so-called web-splines (weighted extended B-splines) for modeling of
curved domains. The corresponding method is applied to various physical applications such as
in the computation of a stationary temperature distribution, the velocity of an incompressible
flow and the deformation of linear elastic bodies. However, while the domains are variable in
shape they are principally homogeneous. The present approach only considers rectangular do-
mains, but it is designed to model heterogeneous material inside the domain. A possible appli-
cation of this approach is the mechanical analysis of heterogeneous materials on the mesoscale
where the macroscopic shape of the analyzed body is not of importance.

Multiphase finite elements are presented in Steinkopff, Sautter & Wulf [18] and Zohdi [21].
Besides several other advanced finite elements methods [16], multiphase finite elements pro-
vide an interesting alternative to model heterogeneous materials. Arbitrary geometries of the
heterogeneous material can be mapped on the integration points of e.g. a uniform orthogonal
mesh of finite elements. Generally this method is expected to be less accurate than aligned
meshing. However, this method only requires pointwise information of the material. Therefore
it is convenient for modeling very complex heterogeneous materials even by three-dimensional
models [4].

The method presented in this paper integrates the multiphase finite element concept into
B-spline finite elements of variable order k while the stated advantages of grid-based modeling
(Section 1.1) can principally be maintained. As a result, the combination of high-performance
and improved accuracy lead to a new quality in grid-based modeling of heterogeneous materials.

1.3 Outline and key aspects of present approach

Section 2 summarizes the boundary value problem of linear elasticity and introduces to the
applied notation. By means of the principle of virtual displacements, the classical displacement-
based finite element formulation is provided in Section 3. Relevant aspects with regard

2



to B-spline finite elements are included. Section 4 introduces to univariate splines and B-
splines. As a relevant key aspect specific modified B-splines according to Schwetlick & Kret-
zschmar [17] are introduced which will allow for a comfortable definition of displacement
boundary conditions. A transparent introduction to one-dimensional B-spline finite elements
is provided in Section 5. As an important aspect, the B-splines are splitted to form individual
finite elements which are assigned to one grid cell as presented in Kessel [13]. The analysis is
exemplified for two problems of a homogeneous bar. These examples are comprehensible by
hand calculation and provide clear access to this method.

In Section 6 two-dimensional B-spline finite elements of variable order k are introduced. It
includes the Gauss-Legendre numerical integration for polynomials of variable order as given
in Duschek [3], the formulation of the global stiffness problem, the definition of boundary con-
ditions and an adaption to iterative solving methods without storage of a global stiffness matrix.
Corresponding implementation issues are discussed in Kessel [14]. A two-dimensional homo-
geneous test problem with higher-order polynomial loading establishes a verification of the im-
plemented method. The convergence rates of relative error in energy are analyzed with respect
to order k of elements (p-version) and size of elements (h-version) in comparison to classical
error estimates provided in Zienkiewicz & Taylor [19].

Section 7 introduces to the proposed multiphase finite element concept to model heteroge-
neous materials. The mechanical theory of a material discontinuity is outlined. In the idea of
this approach the original mechanical problem is transformed into a substitute problem with
continuous material function. While the B-spline finite elements showed severe local defects
for the original problem, they are well applicable to the substitute problem. The accuracy of the
substitute problem can be scaled by one parameter st and in the theoretical limit state st −→ 0
the substitute problem converges to the original problem. After a corresponding introduction to
multiphase finite elements, a simple bar example highlights the effect of transforming the me-
chanical problem. Two further examples deal with a circular inclusion in a matrix. A plain grid
discretization of the circle and an exact mapping of the transformed problem are presented and
analyzed with respect to the defect in the stress solution. Another example of only one material
transition establishes a thorough analysis of the multiphase B-spline finite element method with
regard to type of transition function of the substitute problem, order of elements and size of
elements. Similar to the homogeneous problem an error analysis in terms of stresses and en-
ergy follows. Finally also an effective overall error is estimated. This allows to identify optimal
parameter combinations of the presented method and supplies evidence of its potential.

2 FUNDAMENTALS OF LINEAR ELASTICITY

2.1 Three-dimensional linear elastic problem

An elastic three-dimensional body in a Cartesian coordinate system with base vectors ei,
with i = 1, 2, 3, is considered. In the view of continuum mechanics the body is continuous as
well as all corresponding vector fields, such as displacements U = Ui ei, strains ε = εij ei⊗ ej

and stresses σ = σij ei ⊗ ej . For the linearized theory it is unique to introduce only one coor-
dinate system. In an initial, undeformed state a material point of the body is located at position
X = Xi ei. All field variables refer to this initial configuration and thus can be considered as
a function of X: U = U (X), ε = ε(X) and σ = σ(X). Due to the following symmetry1 of

1For this symmetry the general absence of body moments is presumed.
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strain coordinates εij = εji and stress coordinates σij = σji, the elastic problem includes 15
unknown variables in the coordinates of U , ε and σ; respectively 3 + 6 + 6 = 15. As a formal
solution to determine these unknown state variables a system of 15 equations is introduced,
while as well predefined displacements and tractions on the surface of the body need to be
satisfied. This describes the elliptic boundary value problem of linear elasticity. Six kinematic
equations

ε =
1

2

(
gradU + (gradU )T

)
, εij =

1

2
(Ui,j + Uj,i) (2.1)

define the relationship of strains ε and displacements U . Six constitutive equations

σ = Cε , σij = Cijkl εkl (2.2)

couple stresses σ and strains ε where in the case of the generalized Hooke’s law for homoge-
neous, isotropic material the material tensor Cijkl is defined as

Cijkl = λ δij δkl + µ (δik δjl + δil δjk) (2.3)

It is noted that the Einstein summation convention defines summation over repeated indices.
The Kronecker delta δij is equal to 1 for i = j and equal to 0 for i 6= j. The material specific
variables µ and λ are the Lame constants. The Lame constants can be substituted by Young’s
Modulus E and Poisson’s ratio ν. The corresponding conversions are

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
, E =

µ (2µ + 3λ)

µ + λ
, ν =

λ

2 (µ + λ)
(2.4)

Equilibrium is described by the following three equations∫
V

pidV +

∫
A

σjinjdA = 0 (2.5)

which mean that, in total, body forces piei and surface tractions σjinjei of any considered
volume V , which is bounded by the surface area A, vanish. By the divergence theorem this
equation is transformed into the following well-known fundamental strong form of equilibrium

div σ + p = 0 , σji,j + pi = 0 (2.6)

The analytical solution requires a state of equilibrium at any point on the surface and within
the volume of the considered body. The body is fixed to avoid rigid body motion. It is loaded
by body loads p = pi ei and surface tractions t = ti ei. The surface tractions at the boundary of
the body correspond to the adjacent stresses ti ei = σjinjei where nj are the components of the
outward oriented normal unit vector n = nj ej . It is a boundary value problem with prescribed
displacements UD on ΓD and prescribed surface tractions t on ΓN

U = UD on ΓD (2.7)
σ n = t on ΓN (2.8)

The solution is unique, if rigid body modes are excluded and under some further assumptions,
which generally apply to engineering models (e.g. Young’s modulus is positive).
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2.2 Two- and one-dimensional linear elastic problem

Under certain conditions and presumptions a three-dimensional elasticity problem can be
reduced to a two-dimensional problem. For example, labels of such special states are plane
stress, plane strain or axisymmetric. In this paper only the plane stress state is considered. For
plane stress parallel to the X1X2-plane, the stress components σ13, σ23 and σ33 are equal to zero.
The other stress components are constant with respect to X3. The kinematics equation and the
equilibrium equation can directly be reduced to two-dimensional by reducing the range of the
indices i and j to 2. The constitutive relationship in the plane stress state is

σ11 =
E

(1− ν2)
(ε11 + νε22) , σ22 =

E

(1− ν2)
(νε11 + ε22) , σ12 =

E

2 (1 + ν)
γ12 (2.9)

with γ12 = 2ε12 according to Eq. 2.1. A reduction to one dimension as to the uniaxial stress
problem corresponds to the typical model of a bar. All stress components except σ11 are equal
to zero. In this case the kinematics equation, constitutive equation and equilibrium equation are

ε11 = U1,1 , σ11 = Eε11 , σ11,1 + p1 = 0 (2.10)

3 FINITE ELEMENTS FOR MECHANICAL ANALYSIS

3.1 Principle of virtual displacements

Based on the stated boundary value problem of elasticity the principle of virtual displace-
ments can be derived, as e.g. shown in Bathe [1]. Assuming a body in equilibrium the principle
of virtual displacements states that for any virtual displacements δU , which are conform to the
displacement boundary conditions, the total internal virtual work (l.h.s.) is equal to the total
external virtual work (r.h.s.).∫

Ω

δεTσdV =

∫
Ω

δUTpb dV +

∫
ΓN

δUTps dA (3.1)

The virtual displacements δU must be continuous and vanish at the surface of prescribed dis-
placements ΓD. The virtual strains δε are directly related to the virtual displacements δU ac-
cording to Equation 2.1. The external virtual work is induced by body loads pb and surface loads
ps. The principle of virtual displacements is the basis of the displacement-based finite element
formulation.

3.2 Displacement-based finite elements for mechanical analysis

A linear elastic, continuous body is considered according to the stated three-, two- or one-
dimensional boundary value problem of elasticity. For finite element approximation the con-
tinuum is divided into a finite number of parts, which will be labeled as finite elements. These
elements are interconnected at nodes. Therefore the continuous problem is transformed into a
discrete problem with a finite number of degrees of freedom. The interpretation of degrees of
freedom as nodal values is only valid for classical finite elements, but not for B-spline finite
elements (except for B-splines of order k=1). However, the property remains that a degree of
freedom is a factor which is assigned to a shape function such that the principal interpolation
rule remains.
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The degrees of freedom are stored in a global vector u in a predefined order. To each element
a local order of degrees of freedom is assigned. For each element e an individual matrix of
shape functions N e defines the displacement interpolation field U e within the volume V e of
this element as a function of degrees of freedom ue of this element

U e = N eue , U e
i = N e

iju
e
j (3.2)

where i counts from 1 to the dimension of the stated boundary value problem (1,2 or 3) and j
counts through all local degrees of freedom of element e. The displacement field as a continuous
function within the element e enables to apply the kinematics (Eq. 2.1) and leads to

εe = Beue , εe
k = Be

kju
e
j (3.3)

where Be defines the strain-displacement matrix and k refers to the number of strain compo-
nents of vector εe. The material matrix C establishes a unique relationship between stresses σe

and strains εe

σe = Ceεe , σe
k = Ce

klε
e
l (3.4)

with both variables k and l in the range of 1 to 6 for the three-dimensional case. Then, the
finite element definitions (Eqs. 3.2-3.4) of discretized state variables adopted by the principle
of virtual displacements (Eq. 3.1) for one element e yield2∫

V e

δueTBeTCeBe uedV =

∫
V e

δueTN eTpe
b dV +

∫
Ae

δueTN eTpe
s dA (3.5)

As the entries of the vectors ue and δue are not functions in V e or Ae, but constants, these
vectors can both be extracted from the integral, which further allows for a complete elimination
of δue. This results in the following fundamental relationship

Keue = f e (3.6)

for one element, where Ke is the element stiffness matrix with

Ke =

∫
V e

BeTCeBe dV (3.7)

and f e is the vector of nodal forces

f e =

∫
V e

N eTpe
bdV +

∫
Ae

N eTpe
sdA (3.8)

under the implied presumption that the functions of body loads pe
b and surface loads pe

s are
given in the same local coordinate system as the interpolation matrix N e. In Equation 3.6
the unknown variables are the degrees of freedom of the displacement vector ue as defined
beforehand. Globally the principle of virtual displacements yields the global equation system

Ku = f (3.9)

where the global stiffness matrix corresponds to the sum of element stiffness matrices K̄e after
rearrangement according to the global degrees of freedom

K =
ne∑

e=1

K̄e , Kij =
ne∑

e=1

K̄e
ij (3.10)

2For two matrices A and B the equality (AB)T = BTAT is recalled.
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and the global force vector corresponds to the sum of reordered element force vectors f̄ e.

f =
ne∑

e=1

f̄ e , fi =
ne∑

e=1

f̄ e
i (3.11)

However, the element stiffness matrix Ke as in Equation 3.6 is singular and therefore the solu-
tion of the displacement vector ue is not unique. Displacement boundary conditions need to be
integrated into the finite element scheme. Considering all global degrees of freedom of a finite
element model, then here the index 1 corresponds to degrees of freedom with a prescribed force
and the index 2 corresponds to those of a prescribed displacement.[

K1,1 K1,2

K2,1 K2,2

][
u1

u2

]
=

[
f 1

f 2

]
(3.12)

The initially unknowns of this system are u1 and f 2. As the right hand side of the following
equation is known, it is possible to compute u1

K1,1 u1 = f 1 −K1,2 u2 (3.13)

independent of f 2. For further interest the resulting force vector f 2 at rigid degrees of freedom
yields

f 2 = K2,1 u1 + K2,2 u2 (3.14)

4 DESCRIPTION OF B-SPLINES

4.1 Fundamentals of univariate splines

Univariate means that the spline is one-dimensional or a function of one variable, here x. For
the definition of a univariate spline s̄ in the interval [x0, xn] a sequence of supporting points xi

is introduced with the condition that

xi < xi+1 for i = 0, . . . , n− 1. (4.1)

A spline function s̄ of order k is composed of piecewise polynomials p̄i for i = 0, . . . , (n− 1)
where each polynomial p̄i is at maximum of order k. The piecewise polynomials p̄i have limited
support in the interval [x0, xn] and are defined as

p̄i(x) =

{ ∑k
j=0 c̄i,j xj for x ∈ [xi;xi+1)

0 for x /∈ [xi;xi+1)
(4.2)

with k ≥ 1. The coefficients c̄i,j are scalar values which define the piecewise polynomial p̄i.
In addition to the given function the last piecewise polynomial p̄n−1 also includes the upper
boundary value xn to close the spline interval [x0, xn]. Therewith the spline s̄ is defined as

s̄(x) =
n−1∑
i=0

p̄i(x) for x ∈ [x0, xn] (4.3)

The coordinates xi for i = 1, . . . , (n− 1) where the polynomials join are labeled as breaking
points. In the complete interval [x0, xn] the spline s̄ has (k − r) continuous derivatives. This
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property is declared as Ck−r-continuity. While each piecewise polynomial p̄i is naturally Ck-
continuous in the interval [xi, xi+1[, the continuity of the spline is only reduced at the breaking
points by a predefined order r ≥ 1. Otherwise, if r = 0 at all breaking points the spline would
be one polynomial over the whole interval.

The prior definitions provide some basic fundamentals of splines. However, it is noted that
the provided information is not sufficient for a practical application as e.g. in the approximation
of an unknown function only by a given sequence x0 . . . xn of supporting points. For splines of
higher order (k ≥ 2) there are more polynomial coefficients to determine than conditions are
given by the definitions above. For example, for splines of order k = 2, one additional condition
needs to be specified, such as the minimization of the second order derivative, an additional
value of the function or its derivative, while various choices lead to various approximation
quality. This problem continues with increasing order k. An extensive mathematical theory
treats many special properties and methods related to various forms of splines. The subsequent
introduction is restricted to B-splines (basis splines), which as a sub-category of splines, also
satisfy the given fundamentals.

4.2 B-splines as a functional basis of splines

In comparison to Equation 4.3 any Ck−1 continuous spline of order k can also be defined as
linear combination of n + k linear independent B-splines bk

j

s̄(x) =
n−1∑

j=−k

cjb
k
j (x) for x ∈ [x0, xn] (4.4)

The coefficients cj are the corresponding scalar values. It can simply be shown that there exist
exactly n + k linear independent B-splines in the interval [x0, xn]. For the definition of each
segment of a spline or piecewise polynomial (k + 1) coefficients have to be defined. On the
whole interval this results in n(k + 1) = nk + n coefficients. Presuming Ck−1 continuity, at
each of (n − 1) breaking points k continuity conditions have to be satisfied which leads to
(n − 1)k = nk − k conditions. Therewith (nk + n) − (nk − k) = n + k parameters can be
determined to define a certain spline.

B-splines of order k form a spline basis which always satisfies the intrinsic spline condi-
tions while the choice of (n + k) parameters cj allows to define any Ck−1 continuous spline.
A B-spline has only support on k + 1 neighbouring intervals such that

bj(x) = 0 for x /∈ [xj, xj+k+1] (4.5)

Therewith Equation 4.4 can be rewritten as

s̄(x) =
i∑

j=i−k

cjb
k
j (x) for x ∈ [xi, xi+1] and i = 0 . . . n− 1 (4.6)

which means that in the interval [xi, xi+1] there will be (k + 1) B-splines defined. Equation
4.6 yields that the considered spline interval [x0, xn] also includes B-Splines of the intervals
[x−k, x1] and [xn−1, xn+k].

4.3 B-spline formulations

The uniform B-spline bk of order k is defined by the recursion

bk(x) =

∫ x

x−1

bk−1(t)dt (4.7)
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Fig. 4.1: Uniform B-splines of order k = 1 . . .10

starting from the characteristic function b0 of the unit interval [0;1]

b0(x) =

{
1 for x ∈ [0; 1)
0 for x /∈ [0; 1)

(4.8)

Alternatively, for computational reasons Equation 4.7 can be brought into the following form,
labeled as Recurrence Relation [2, 10]

bk(x) =
x

k
bk−1(x) +

k + 1− x

k
bk−1(x− 1) (4.9)

The application of the recursion of Equation 4.7 to the constant B-Spline (Eq. 4.8) yields the
uniform, linear B-spline

b1(x) =


x for x ∈ [0; 1)
−x + 2 for x ∈ [1; 2)
0 otherwise

(4.10)

which is also known as hat-function within the context of finite elements. The same principle
then leads to the uniform quadratic B-spline

b2(x) =


1
2
x2 for x ∈ [0; 1)

−x2 + 3x− 3
2

for x ∈ [1; 2)
1
2
x2 − 3x + 9

2
for x ∈ [2; 3)

0 otherwise

(4.11)

and the uniform cubic B-spline.

b3(x) =



1
6
x3 for x ∈ [0; 1)
−1

2
x3 + 2x2 − 2x + 2

3
for x ∈ [1; 2)

1
2
x3 − 4x2 + 10x− 22

3
for x ∈ [2; 3)

−1
6
x3 + 2x2 − 8x + 32

3
for x ∈ [3; 4)

0 otherwise

(4.12)

The first ten B-splines of order k = 1 . . .10 are shown in Figure 4.1. The uniform B-Spline
of order k is of the length k + 1. The uniform B-Spline is scaled to a segment length h and
translated by a distance d by the following expression.

bk
d,h(x)=bk(x/h− d) (4.13)
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Considering an infinite sequence of similar B-splines at a neighbouring distance d = h, the sum
of these B-splines will be equal to 1 at any coordinate (partition of unity). It also follows that
in each interval [xi, xi+1], with xi+1 = xi + h, similar B-spline segments will be represented.
For the following formulation of B-spline finite elements it will be useful and sufficient only to
consider these (k + 1) B-Spline functions in an interval [0, h].

4.4 Modified B-Splines towards Endpoints

For the following finite element approach it is advantageous to modifiy the B-splines such
that the endpoints of the spline will either be equal to 0 or to 1. Then it will be straightforward to
apply displacement boundary conditions. Therefore a special recurrence relation, as presented in
Schwetlick & Kretzschmar [17], will be adapted. It starts by the following definition of B-splines
of order k = 1.

b1
j(x) =


x−xj

xj+1−xj
for x ∈ [xj;xj+1)

xj+2−x

xj+2−xj+1
for x ∈ [xj+1;xj+2)

0 otherwise

(4.14)

Multiple knots will be introduced at the coordinates of the endpoints in the considered inter-
val [x0;xn].

x−k = x−k+1 = . . . = x−1 = x0 , xn = xn+1 = . . . = xn+k−1 = xn+k (4.15)

The modified B-Splines of order k > 1 can recursively developed by

bk
j = ωk−1

j (x)bk−1
j (x) + [1− ωk−1

j+1 (x)]bk−1
j+1(x) (4.16)

with

ωk−1
j (x) =

{
x−xj

xj+k−xj
if xj+k > xj

0 if xj+k = xj

(4.17)

for j = −k, . . . , n− 1. This recursive formula is designed to develop (modified) B-splines in
the interval [x0;xn]. For implementation issues it is referred to Kessel [14]. Modified B-splines
segments occur in (k − 1) intervals (of length h) towards the endpoints. This means that in
(2k − 1) intervals, one regular B-spline segment will be created in the center. A larger number
of intervals leads to several regular B-spline segments in the center. A smaller interval causes
to create modified B-splines only. For the case of k = 2, three segments are required to include
exactly one regular B-spline. Figure 5.1 shows such modified and regular B-splines of order
k = 2 in the interval [x0, x4]. The various occuring B-spline types in one interval according to
Figure 5.1 are highlighted in detached form in Figure 5.2.

5 ONE-DIMENSIONAL B-SPLINE FINITE ELEMENTS

As descriptive demonstration of B-spline finite elements the one-dimensional case is in-
cluded. The corresponding formulation is explicitely given for quadratic B-spline finite ele-
ments. This Section prepares some basic principles for the following more abstract and sym-
bolic description of two-dimensional B-spline finite elements in Section 6.
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 Fig. 5.1: Partition of unity by 6 B-splines (k=2) which
are modified in the end segments (x0, x1) and (x3, x4) .

 
Fig. 5.2: B-splines (k=2) splitted into finite elements
(I,II,III) with three shape functions (a,b,c) each.

5.1 Local interpolation scheme

As a special characteristic about the following formulation of B-spline finite elements, the
B-splines are splitted into segments to create element stiffness matrices for each interval sep-
arately. Nevertheless, continuity of the displacement solution will be recovered by a specific
assembly of the global stiffness matrix. The interpolation of the displacements (Eq. 3.2) is de-
fined by NJ where J is a placeholder for the different element types I , II or III according to
Figure 5.2 by

U(x) = NJu (5.1)

with the following degrees of freedom

u =
[

ua ub uc

]T (5.2)

and the interpolation functions, or shape functions, NJ

N I =
[

x2

h2 − 2x
h

+ 1 , −3x2

2h2 + 2x
h

, x2

2h2

]
N II =

[
x2

2h2 − x
h

+ 1
2

, −x2

h2 + x
h

+ 1
2

, x2

2h2

]
N III =

[
x2

2h2 − x
h

+ 1
2

, −3x2

2h2 + x
h

+ 1
2

, x2

h2

] (5.3)

5.2 Element stiffness matrices

Within each element of type J the strain ε(x) is calculated by

ε(x) =
dU(x)

dx
=

d

dx
NJu = BJu (5.4)

where BJ are the strain-displacement matrices (Eq. 3.3). Based on the recurrence relation there
are special rules to get the derivative of a spline function. However, due to the concurrent for-
mulation and purpose, the usual derivation as known for polynomials is also convenient and
leads to

BI =
[

2x
h2 − 2

h
, −3x

h2 + 2
h

, x
h2

]
BII =

[
x
h2 − 1

h
, −2x2

h2 + 1
h

, x
h2

]
BIII =

[
x
h2 − 1

h
, −3x

h2 + 1
h

, 2x
h2

] (5.5)
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For building the element stiffness matrices the material matrix C is required. Here, in the one-
dimensional case it is a scalar matrix C = [E] of Young’s modulus E. The stress σ (Eq. 3.4) is
calculated by

σ(x) = CBJu (5.6)

For the segment basis length h and section area A the integral (Eq. 3.7)

K = A

∫ h

0

BTCB dx (5.7)

leads to the following element stiffness matrices of type J = I , II and III .

KI= EA
h


4
3
−1 −1

3

−1 1 0

−1
3

0 1
3

 KII= EA
h


1
3
−1

6
−1

6

−1
6

1
3
−1

6

−1
6
−1

6
1
3

 KIII= EA
h


1
3

0 −1
3

0 1 −1

−1
3
−1 4

3

 (5.8)

5.3 Notes on global stiffness matrix

For a bar example the left boundary of the bar is modeled by element type I and the right
boundary by element type III. All elements in between are of type II. It is important to note, that
all shape functions of the B-Spline are not directly associated with nodal values or nodes. It is
rather useful to regard a shape function as part of an element only. To establish the continuity of
the displacement solution as required, it has to be ensured that the shape function segments of
one B-Spline will be associated with the same global degree of freedom. In three neighboring
elements (as in Fig. 5.2) the segment (c) of the left element, the segment (b) of the middle
element and the segment (a) of the right element correspond to one and the same B-Spline
shape function and need therefore to be associated to the same global degree of freedom.

5.4 Example: Homogeneous B-Spline bar elements of order k=2

The following example provides a clear and transparent access to the presented method of
B-spline finite elements. It can be included into any introductory course on finite elements.
Moreover, this example highlights some characteristics of B-spline finite elements and therefore
prepares for further developments of these elements.

The stiffness matrix K of four B-Spline finite elements without consideration of displace-
ment boundary conditions is composed of KI , KII and KIII as

K =
EA

h



4
3

−1 −1
3

0 0 0

−1 1 + 1
3

−1
6

−1
6

0 0

−1
3

−1
6

1
3
+ 1

3
+ 1

3
−1

6
− 1

6
−1

6
0

0 −1
6

−1
6
− 1

6
1
3
+ 1

3
+ 1

3
−1

6
−1

3

0 0 −1
6

−1
6

1
3
+ 1 −1

0 0 0 −1
3

−1 4
3


(5.9)

For best transparency of the method an academic example of simple system parameters without
dimension is chosen. Length of the beam according to Fig. 5.3(a) is 4. Young’s modulus E and
area of section A are both set to 1, such that the factor EA

h
= 1. The displacement boundary

12



 
p 

F 

(a)  (b)  

Fig. 5.3: Static systems of a bar problem: (a) a bar loaded by F and (b) bar with constant line load p.

condition of the left end leads to elimination of first line and column of the matrix (Eq. 5.9) and
therefore to

K =



4
3

−1
6
−1

6
0 0

−1
6

1 −1
3
−1

6
0

−1
6
−1

3
1 −1

6
−1

3

0 −1
6
−1

6
4
3

−1

0 0 −1
3
−1 4

3


u =



0.5

1.5

2.5

3.5

4.0


f =



0

0

0

0

1


(5.10)

For system of Fig. 5.3(a) with the load F = 1 the load vector f is straightforward to construct.
The solution of the equations system Ku = f leads to u as provided above (Eq. 5.10). The
composition of the linear displacement field by the B-spline shape functions according to this
example is shown in Fig. 5.4.
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Fig. 5.4: B-Spline shape functions and displacement so-
lution according to system in Fig. 5.3(a).
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Fig. 5.5: B-Spline shape functions and displacement so-
lution according to system in Fig. 5.3(b).

A further example with the same structural parameters and stiffness matrix with constant
line load p as shown in Fig. 5.3(b) follows. The effective load associated to the segments of one
element is the result of the integral (Eq. 3.8)

f =

∫ h

x=0

NTp(x)dx (5.11)

For a constant load of p = 0.5, the load function can be extracted from the integral, such that
only the following integrals are relevant.∫ h

x=0
N I dx =

[
h
3

, h
2

, h
6

]
∫ h

x=0
N II dx =

[
h
6

, 2h
3

, h
6

]
∫ h

x=0
N III dx =

[
h
6

, h
2

, h
3

] (5.12)
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Again, segments which belong to the same global degree of freedom are associated, such that
the following load vector f and solution u to this problem is obtained.

f =
[

1
3

1
2

1
2

1
3

1
6

]T
, u =

[
1.0 2.5 3.5 4.0 4.0

]T (5.13)

As further explanation the first entry of f sums up from a segment b of type I and a segment
a of type II, which is 1

2
+ 1

6
= 2

3
and multiplied by p = 0.5 results in 0.52

3
= 1

3
. The displace-

ment solution is graphed in Fig. 5.5. It corresponds to the exact analytical solution (Eq. 2.10),
EAU,xx +p = 0 with U(x = 0) = 0 and σ(x = 4) = 0, therewith U = −1

4
x2 + 2x.

6 TWO-DIMENSIONAL B-SPLINE FINITE ELEMENTS

6.1 Local interpolation scheme

The following method is formulated for orthogonal, two-dimensional meshes with uniform
grid space hx and hy in x- and y-direction respectively. Initially, uniform, univariate B-splines
of order k are generated. The required minimum size of the domain corresponds to (2k − 1)
grid intervals in both directions (Section 4.4). Subsequently, the uniform B-splines are scaled
according to grid spaces hx and hy (Eq. 4.13). Bivariate B-splines result from the tensor prod-
uct [10].

b jx,jy(x, y) = b jx(x) b jy(y) (6.1)

The superscripts jx and jy signify that various element types are used, such as in the one-
dimensional case (Section 5.1). With respect to computational implementation it is not reason-
able to explicitly build the bivariate B-splines in symbolic form, when it is sufficient to calcu-
late discrete values of b jx,jy(x, y). Then, it is more efficient with respect to memory storage and
number of operations to evaluate the factors b jx(x) and b jy(y), and apply these discrete values
to Equation 6.1 to obtain b jx,jy(x, y). Bivariate B-splines as shape functions of two-dimensional
finite elements are shown in Fig. 6.1.

 

Fig. 6.1: Bivariate B-spline finite element shape functions: k=1, k=2 and k=3 (from left to right).

6.2 Element stiffness matrices

Similar to the one-dimensional case and as stated by the kinematics, derivatives of the shape
functions b jx,jy(x, y) need to be computed. To obtain these partial derivatives at discrete coor-
dinates it is convenient to reuse the principle of Equation 6.1 in the following form.

∂b jx,jy(x, y)

∂x
=

∂(b jx(x) b jy(y))

∂x
=

∂b jx(x)

∂x
b jy(y) (6.2)
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∂b jx,jy(x, y)

∂y
=

∂(b jx(x) b jy(y))

∂y
= b jx(x)

∂b jy(y)

∂y
(6.3)

The interpolation matrices are created for individual elements which correspond to one grid
patch. Analog to Equation 5.1 this is

U = N jx,jyu (6.4)

for the two-dimensional case with

U =

[
Ux

Uy

]
(6.5)

N jx,jy =

[
N1 . . . Nn̄ 0

0 N1 . . . Nn̄

] jx,jy

(6.6)

u =
[

ux,1 . . . ux,n̄ uy,1 . . . uy,n̄

]T (6.7)

Here, the index n̄ denotes the number of bivariate spline segments in one element which
corresponds to n̄ = (k + 1)2 or if the order of B-splines is different in x- and y-direction
n̄ = (kx + 1)(ky + 1). The superscripts jx and jy define the element type in x- and y-direction,
respectively. The strain-displacement relationship is

ε = B jx,jyu (6.8)

with the same degrees of freedom u (Eq. 6.7) and

ε =
[

εxx εyy 2εxy

]T (6.9)

Bjx,jy =


∂N1

∂x
. . . ∂Nn̄

∂x
0

0 ∂N1

∂y
. . . ∂Nn̄

∂y
∂N1

∂y
. . . ∂Nn̄

∂y
∂N1

∂x
. . . ∂Nn̄

∂x


jx,jy

(6.10)

Recalling the constitutive law of plane stress (Eq. 2.9) yields the material matrix C as

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (6.11)

The stiffness matrices are evaluated by numerical integration

Kjx,jy = t
hx

2

hy

2

nx∑
i=1

ny∑
j=1

wx,i wy,j

(
Bjx,jy

T
CBjx,jy

)
(6.12)

where t is the depth of the two-dimensional system. It is practical to substitute C(E,ν) =
EC(1, ν) and to build the element stiffness matrices for Young’s modulus E = 1. Then the
stiffness matrix can be adapted to any Young’s modulus by a simple scalar factor. The variables
wx,i and wy,j denote the weighting factors of the numerical integration scheme as described in
the following Section 6.3.
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6.3 Gauss-Legendre numerical integration of variable order

For a limited number of integration points the coordinates and weights of the Gauss-
Legendre numerical integration can be taken from tables as e.g. given by Bathe [1]. However,
for a variable order k of B-spline finite elements it is required to implement the general scheme
for a variable number of integration points. For a one-dimensional function g(s) in the interval
[−1,1] the fundamental equation is∫ 1

−1

g(s) ds ≈
n∑

i=1

wi g(si) (6.13)

where wi are the weights and si are the coordinates of the integration points. An integration of
g(x) in the interval [xa, xb] can be replaced by an integration of g(s) in the interval [−1,1]∫ xb

xa

g(x) dx =

∫ 1

−1

g(s) detJ ds (6.14)

with the transformation of coordinates

x =
1

2
((xb − xa) s + xa + xb) (6.15)

and the determinant of the Jacobian matrix

detJ =
dx

ds
=

xb − xa

2
(6.16)

From Eqs. 6.13 to 6.16 it follows that a function g(x) in an interval [0, h] is numerically inte-
grated as follows ∫ h

0

g(x) dx ≈ h

2

n∑
i=1

wi g

(
h

2
(1 + si)

)
(6.17)

The coordinates of the integration points si correspond to the zero points of the Legendre
polynomials in the interval [−1; 1]. The Legendre polynomials can be generated by the follow-
ing recursion as documented in Duschek [3]

Pn+1(s) =
2n + 1

n + 1
sPn(s)− n

n + 1
Pn−1(s) (6.18)

where the Legendre Polynomials P0(s) = 1 and P1(s) = s are used as start values. There is no
closed-form solution to obtain the n zero points of Pn(s), but the following lower and upper
estimates of si are available.

− cos

(
n− 0.5

i + 0.5
π

)
< si < − cos

(
n

i + 0.5
π

)
for i = 1, . . . , n (6.19)

There is always exactly one coordinate si in the intervals of Eq. 6.19. For the search of this
zero point within a closed interval the bisection method is applied. As an alternative the more
efficient, but apparently less stable Newton method shall be mentioned.

The weights wi of the integration points si are determined by

wi =
2

nPn−1(si)
dPn(si)

ds

(6.20)
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The integration points are symmetric to the origin and the corresponding weighting factors are
equal. Therefore the numerical effort can be reduced to one symmetric half. Clearly, for a odd
number of integration points, one is located at the origin.

An application of the one-dimensional integration formula (Eq. 6.17) to the x− and y-
coordinate successively, transforms the symbolic integral for evaluating the element stiffness
matrix (Eq. 3.7) into its numerical counterpart as given in Eq. 6.12. For B-spline shape func-
tions of order k the integrands in Equation 6.12 will at maximum be a polynomial of order 2k
with respect to either x or y. For the one-dimensional case n integration points exactly integrate
a polynomial of at most order (2n− 1) such that in one dimension n = k + 1 integration points
would be required. In two dimensions this corresponds to an (unequally spaced) grid of n× n
integration points.

6.4 Global formulation of B-spline finite element problem

A uniform, orthogonal, two-dimensional mesh of B-spline finite elements of variable order k
is considered. The mesh includes nex × ney elements and nnx × nny nodes. The global degrees
of freedom are splitted3 into x-and y-direction and the following numbering system refers to one
direction only. Then, without activating displacement boundary conditions, there are nsx × nsy

B-spline coefficients4 assigned to the global mesh. The local degrees of freedom in one element
correspond to ncx×ncy B-spline coefficients. For these definitions the following equalities hold

nnx = nex + 1 , nny = ney + 1 , (6.21)
nsx = nex + k , nsy = ney + k , (6.22)
ncx = k + 1 , ncy = k + 1 , (6.23)

The numbering of elements ieg, nodes ing, global B-spline coefficients isg and local B-spline
coefficients icg of an element can be defined as

ieg(i, j) = i + jnex with i = 0 . . . nex − 1, j = 0 . . . ney − 1, (6.24)
ing(i, j) = i + jnnx with i = 0 . . . nnx − 1, j = 0 . . . nny − 1, (6.25)
isg(i, j) = i + jnsx with i = 0 . . . nsx − 1, j = 0 . . . nsy − 1, (6.26)
icg(i, j) = i + jncx with i = 0 . . . ncx − 1, j = 0 . . . ncy − 1, (6.27)

where the universal variables i and j count the various entities in positive x- and y-direction,
respectively. In adaption to the implementation the count variables start by 0. At the corners
of element (i, j) there are the nodes (i, j), (i + 1, j), (i + 1, j + 1) and (i, j + 1). Accordingly
the local B-spline shape coefficients in element (i, j) refer to the global B-spline coefficients
(i . . . i + k, j . . . j + k). Therefore, the assignment of local B-spline coefficients (i∗, j∗) of an
element (i, j) into the global vector of B-spline coefficients isg is defined as

isg(i, j, i
∗, j∗) = (i + i∗) + (j + j∗)nsx (6.28)

with i = 0 . . . nex − 1 , j = 0 . . . ney − 1 , i∗ = 0 . . . k , j∗ = 0 . . . k

As for a one-dimensional example where e.g. j = 0 and j∗ = 0 with k = 2 this means that
segment i∗ = 2 of element i = 0, segment i∗ = 1 of element i = 1 and segment i∗ = 0 of

3Similar as in the local degrees of freedom of Eq. 6.7
4In this context B-spline coefficient is used as illustrative synonym to degree of freedom.
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element i = 2 are segments of one and the same B-spline isg = 2 (compare this to Section 5.3
and Fig. 5.2).

After the computation of all different element stiffness matrices, the assignment from local
to global degrees of freedom as given by Eq. 6.28 provides a clear order to build the full singular
global stiffness matrix. After that certain degrees of freedom need to be eliminated according
to boundary conditions (Section 6.5).

However, one of the basic ideas of the present paper is not to store a global stiffness matrix.
This possibility is supported by the uniformity of B-spline shape functions and the resulting low
number of varying element stiffness matrices. A corresponding scheme of an iterative solver
method is outlined in Section 6.6. Nevertheless the defined order of entities and the global
ordering according to Eq. 6.28 is maintained.

6.5 Boundary conditions

With common finite elements boundary conditions are often treated in terms of nodal forces
or nodal displacements only. In fact the underlying theory principally corresponds to that re-
quired for B-Spline finite elements. However, the characteristic of B-spline finite elements of
order k ≥ 2 that the values at nodes do not have a direct counterpart in the vector of unknowns
require some more considerate treatment.

The required formulation to apply forces to the finite element system is already provided by
Equation 3.8. Analog to the element displacement vector Eq. 6.7 the element vector of forces is

f =
[

fx,1 . . . fx,n̄ fy,1 . . . fy,n̄

]T (6.29)

For the two-dimensional plane stress problem the vectors of body loads pb and surface loads ps

are reduced by the dimension of depth and they are only functions of x and y.

pb =

[
pbx

pby

]
and ps =

[
psx

psy

]
(6.30)

The integrals of Equation 3.8 are evaluated numerically as described in Section 6.3. The element
forces can be assembled into the global vector of forces according to Section 6.4. The present
implementation supports line forces along the edges of rectangular domains. With the modified
B-splines towards the boundaries the definition of these loads principally corresponds to the
one-dimensional case while still x- and y-direction need to distinguished.

Any polynomial load function pi(ξ) can be applied by defining a list of load terms ci,jξ
j ,

similar to Eq. 4.2, the result of which will be summed up. The variable ξ is representative for a
local coordinate system. Furthermore it is noted that point forces at corner points can directly
be added to the corresponding force vector entry as at the corners, as an exception, the relevant
shape functions are equal to 1.

Therefore it is obvious that also displacement conditions on corner points can directly be
defined. With the definition of Eq. 6.26 the corresponding degrees of freedom of the four corners
are

isg(0,0) , isg(nsx − 1,0) , isg(0, nsy − 1) , isg(nsx − 1, nsy − 1) , (6.31)

As further possibility only displacement conditions along the edges of the domain are consid-
ered in the following. A constant displacement along an edge which equals to 0 is straightfor-
ward to define as the degree of freedom of shape functions which are unequal to 0 at this edge
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needs to be set to 0. This is only possible through the introduction of the mentioned modified
B-splines. The relevant degrees of freedom along the four edges are

isg(i,0) , isg(nsx − 1, j) , isg(i, nsy − 1) , isg(0, j) , (6.32)

with the range of i and j as in Eq. 6.26. Otherwise any polynomial displacement functions can
be defined or approximated along the edges. This problem corresponds to the one-dimensional
case. An equation system needs to be solved, where n+ k values of the predefined displacement
function need to be evaluated to determine n + k B-spline coefficients according to the defin-
itions in Section 4.2. The n + k function values are evaluated at equidistant coordinates along
the edge in our approach. Other choices in the approximation of the displacement function are
possible as described in Section 4.1. It is noted that also in this Section the applied numerical
order referred to the full singular equation system as given in Eq. 3.12 such that the additional
steps of Eq. 3.13 and Eq. 3.14 are required to solve for the unknowns.

6.6 Iterative solving of B-spline finite element problem without storage of global stiffness
matrix

Grid-based modeling supports iterative solving of the equation system without storing a
global stiffness matrix in the memory. Any data which is required from the global stiffness
matrix, as e.g. a specific entry or row, can be reconstructed on basis of the element stiffness
matrices. As an essential key this is efficient by a fast access to a low number of different
element stiffness matrices. The predefined numbering system of Section 6.4 further reduces
the required memory demand and number of operations in the algorithm in contrast to the
topology of an arbitrary mesh. In summary only a few number of vectors need to be stored, as
itemized in [5] for bilinear finite elements. Undoubtfully, at least, these are the global vector of
displacements u and the global vector of f . Some further auxiliary vectors are required which
depends on the applied iterative solver method.

In the following such a matrix-free application of the conjugate gradient method, which
originates from Hestenes & Stiefel [9], is briefly discussed. In its algorithm the global stiffness
matrix K is only involved in the computation of the global matrix-vector product Kv where
v is a global vector. From Eq. 3.10 it follows that this global matrix-vector product Kv can be
replaced by a sum of element-based matrix-vector products K̄ev̄e such as

v̂ := Kv =
∑

e

K̄ev̄e (6.33)

where K̄e and v̄e refer to the global ordering of degrees of freedom and v̂ only denotes the
result vector. In practice it is only useful to store the element stiffness matrices according to the
local degrees of freedom Ke. Then the principle of Eq. 6.33 is represented by the following
steps:

(1) Set all entries of v̂ to 0.
(2) Copy the adequate entries of v into ve.
(3) Perform local matrix vector product v̂e := Keve.
(4) Add v̂e to the adequate entries of the global vector v̂

(5) In a loop through all elements e continue by (2)
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For ignoring global degrees of freedom with displacement boundary conditions, the correspond-
ing entries within v and v̂ are simply set to zero. By this procedure the storage of a global
stiffness matrix is superseded for B-spline finite elements of any order k.

This is also possible by the multigrid method which is much more efficient with respect to
computation times. It is the ideal method for solving very large problems as the effort only
increases linear with problem size. However, in this paper the multigrid method is out of scope.
It shall only be mentioned that Höllig [11] presented the multigrid method for web-splines
where such B-splines finite elements are defined on all grids. As an alternative it can be useful to
implement B-splines finite elements into an existing multigrid environment [5, 8] with classical
finite elements by only creating adequate mutual transfer operators between a mesh of B-splines
finite elements and a mesh of classical finite elements.

6.7 Example: Homogenous two-dimensional problem

In this example, the approximation quality of B-spline finite elements is evaluated with re-
spect to variable order of B-splines (p-version) and variable size of elements (h-version). There-
fore the example is sufficiently complex and the analytical solution is known such that the error
analysis is accurate. The analytical solution of this example is

F = Re ((x + iy)η) (6.34)

where F is the Airy function [15], i is the imaginary unit i2 = −1 and Re means the real part
of a complex number. Any valid solution to Airy’s function F follows the condition ∆∆F = 0.
The stresses are defined as

σxx = F,yy , σyy = F,xx , σxy = −F,xy (6.35)

These stresses are applied as boundary conditions in terms of load px and py to the system
shown in Fig. 6.2.

x 

y 

B 

py px 

H 

py 

py 

px 

py 

Fig. 6.2: Homogeneous system with B=1 and H=1 under
higher-order polynomial loads px and py along its boundaries.

+40 

-20 

Fig. 6.3: B-spline finite element solution of
stress σxx to problem of Fig. 6.2 for k = 4.
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The load functions shown in Fig. 6.2 qualitatively correspond to Equation 6.34 with η = 5
which is Fη=5 = x5 + 10x3y2 + 5xy4. For η = 5 the analytical stress solution is

σxx = −20x3 + 60xy2 , σyy = 20x3 − 60xy2 , σxy = 60x2y− 20y3 (6.36)

For the boundaries where x = 0, y = 0, x = 1 and y = 1 it is straightforward to define the
tractions px and py from these stresses. The inner potential energy Πi of the system is defined
as

Πi =
1

2

∫ 1

x=0

∫ 1

y=0

σT ε dx dy (6.37)

For η = 5 the inner potential is Πi(η = 5) = 3291
7
. The inner potential of the finite element

solution will be less, or equal in case it corresponds to the analytical solution. The relative error
of the inner potential of the finite element solution to the analytical solution is a reference value
for the accuracy of the finite elements. In Figs. 6.4 and 6.5 this error is labeled as relative error
in energy. These diagrams show the convergence of this error with respect to order of B-splines
k (Fig. 6.4) and element size h (Fig. 6.5).
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Fig. 6.4: Convergence of error with respect to polyno-
mial order k for a constant size of elements h = 8

128 .

1,0E-15

1,0E-13

1,0E-11

1,0E-09

1,0E-07

1,0E-05

1,0E-03

1,0E-01

1 2 3 4 5

k=1

k=2 

k=3

Side length h  of finite elements with s =1/128 

limit of 
precision

R
el

at
iv

e 
er

ro
r 

in
 e

ne
rg

y

16s 8s 2s 1s4s

Fig. 6.5: Convergence of error with respect to element
size h for the example η = 5.

It follows from these diagrams that it is much more efficient to decrease the error by an
increase of polynomial order k than by an increase of element number (or equivalent decrease
of element size). It is a well known fact that the p-version is better for homogeneous problems
than the h-version. This example shows that implementation of the proposed B-splines finite
elements and the routine of definined higher-order polynomial load function is accurate. A
limit of tolerance due to limited computational precision is carefully assigned to the dimension
10−12 of relative error in energy. Values below practically correspond to the exact solution.
As for example for η = 5 the stress functions are at maximum of polynomial order 3, then
the corresponding displacement function is at maximum of order 4. Therefore B-spline finite
elements of the order k = 4 shall lead to the exact solution which is shown to be true in Fig. 6.4
(within the tolerance of precision). Fig. 6.3 illustrates the corresponding solution of stress σxx.

According to Zienkiewicz & Taylor [19] some error convergence rate estimators are briefly
outlined. Assuming that the exact displacement solution can be approximated by a Taylor serie,
the displacement solution of the finite elements only include terms up to the order k. Then,
the error only includes terms of the order k + 1 or higher. Therefore this error is estimated to
converge by the order O(hk+1). The strains are the first derivatives of the displacements such
that the error in strains is assigned to one order below O(hk). Accordingly, an estimate of the
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Error(2h) / Error(h)
a priori h = 8s h = 4s h = 2s h = 1s

k = 1 4 3.9904 3.9973 3.9992 3.9998
k = 2 16 16.043 16.012 16.003 16.003
k = 3 64 60.710 63.577 - -

Table 1: Convergence rates with respect to the results presented in Fig. 6.5.

convergence rate of the inner potential Πi (Equation 6.37) leads to the order O(h2k). For the
example in Fig. 6.5, the convergence rate estimator is O(h2) for k = 1, O(h4) for k = 2 and
O(h6) for k = 3, which fits quite well to the achieved results as illustrated in Table 1. There-
fore without proof the results indicate that the convergence rate estimator is also applicable to
B-spline finite elements of variable order k.

7 MULTIPHASE FINITE ELEMENT CONCEPT FOR HETEROGENEOUS SOLIDS

7.1 Original mechanical problem with material discontinuity and substitute problem
with continuous material function

The multiphase finite element concept is introduced for the mechanical analysis of hetero-
geneous solids. Before evaluating the corresponding finite element formulation, it is useful to
show the main characteristics of the fundamental mechanical theory with respect to heteroge-
neous materials. Furthermore the original mechanical problem of heterogeneous material will
be substituted by a transformed problem which will also converge to the exact solution while
it initially appears less effective. However, it will be shown that this transformation cures a se-
vere defect of the multiphase finite element solution, while the induced error by the substitute
problem is comparatively low.

Ω2 
Ω1 

vn 
vt 

e1 

e2 

X 

ΓD UD 

Γ12 

t ΓN 

Fig. 7.1: Original problem with material discontinuity
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st 

Fig. 7.2: Substitute problem with continuous material

As a principle example of a heterogeneous material, in Fig. 7.1 an inclusion (Ω1) in a matrix
material (Ω2) is shown. Without the inclusion, the illustrated problem corresponds to the bound-
ary value problem of linear elasticity as stated in Section 2. Additional compatibility conditions
can be formulated for the rigid bonded interface between Ω1 and Ω2 which is denoted as Γ12.
Rigid bond is expressed by U 1 = U 2 on Γ12 where the superscript i refers to the domain Ωi.
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In terms of stresses and strains, the compatibility conditions are

σ1
nn = σ2

nn , σ1
nt = σ2

nt , ε1
tt = ε2

tt , on Γ12 (7.1)

where the indices n and t correspond to the normal and tangential directions of the interface,
vn and vt on Γ12, as sketched in Fig. 7.1. Invoking the plane stress material law leads to

εi
nn =

1− ν2
i

Ei

σnn − νiεtt (7.2)

σi
tt = νiσnn + Eiεtt (7.3)

εi
nt =

1 + νi

Ei

σnt (7.4)

which highlights that apart from some possible exceptions for different materials the following
inequalities may occur

ε1
nn 6= ε2

nn , ε1
nt 6= ε2

nt , σ1
tt 6= σ2

tt , on Γ12 (7.5)

For the subsequent approach it is especially important to note that some strains will not be
continuous at a material discontinuity. However, the B-spline basis of the introduced finite ele-
ments for a polynomial order of k ≥ 2 is always continuous in its derivatives and therefore only
enables continuous strain fields. This discrepancy of continuity or discontinuity as described
would lead to a severe defect if the B-Spline finite element method is applied to the original
problem (Fig. 7.1).

Instead, a transformed problem is introduced (Fig. 7.2). The discontinuous material field is
approximated by a smooth, continuous material field. The following conditions are introduced.

Ω3 ⊂ Ω1 , Ω4 ⊂ Ω2 , (7.6)

with
E3 = E1 , E4 = E2 , ν3 = ν1 , ν4 = ν2 , (7.7)

The material in Ω5 is defined such that

E5(X) = E3 and ν5(X) = ν3 on Γ35 (7.8)
E5(X) = E4 and ν5(X) = ν4 on Γ45 (7.9)

The defined material transition in Ω5, as well as its boundaries Γ35 and Γ45, is assumed to be
sufficiently smooth. The material transition in Ω5 is monotonic in a section perpendicular to Γ35

or Γ45. Then, with the definition that
st −→ 0 (7.10)

which corresponds to
Ω3 −→ Ω1 , Ω4 −→ Ω2 , (7.11)

a continuous substitute problem is generated which will converge to the original problem and
therefore to the exact solution. However, for finite values of st, the width of the transition
zone Ω5 (Fig. 7.2), all strains and stresses will be continuous in the substitute problem. The
B-spline finite elements can well be applied to the substitute problem, as B-spline finite ele-
ments are effective in the approximation of smooth solutions.
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Ω3 Ω4 Ω5 

Fig. 7.3: Adapted number of integration points in multiphase finite elements.

7.2 Description of multiphase finite elements

Finite element meshes which are aligned to phase boundaries are the conventional way to
analyze heterogeneous materials. But aligned mesh generation can become very complex, espe-
cially with regard to irregular shapes and three-dimensional models. Alternatively, an unaligned
projection on a grid of conventional finite elements is demonstrated in [5]. It is possible to refine
the discretization of the mesoscale geometry by multiphase finite elements [18, 21, 20] without
increasing the number of elements or degrees of freedom.

In the preparation of an element stiffness matrix for each integration point i the integrands
K̄

e
i will initially be prepared and stored for a Young’s modulus E = 1 in matrix C (Eq. 6.12).

Based on these parts K̄
e
i the assembly of specific element stiffness matrices e with different

Young’s modulus in each integration point (Ee
1 . . .Ee

n) is very fast established by

Ke(Ee
1 . . .Ee

n) =
n∑

i=1

Ee
i K̄

e
i (7.12)

where in comparison to Eq. 6.12 the the two sums have been reduced to one sum over i = 1 . . . n
with n = nxny. For finite elements of homogeneous material the order of the integrand only
depends on the order of B-splines k (Eq. 6.12). With both, the shape functions and material
function, being polynomials, a higher number of integration points can be determined such that
the integration will be exact (Section 6.3). Otherwise, if an element crosses an interface a higher
number of integration points generally increases the integration accuracy. Fig. 7.3 illustrates the
idea of an adapted various number of integration points according to the material defined within
the finite element.

It is pointed out that the evaluation of Ke as in Eq. 7.12 will increase the effort within the
conjugate gradient method with respect to Eq. 6.33, but only for heterogeneous elements. The
number of degrees of freedom does not increase.

By the combination of the multiphase concept and B-spline elements, the geometrical res-
olution and the approximation quality of each finite element can be controlled based on an
efficient local formulation. It is pointed out that only in combination with smoothing of the ma-
terial function as defined by the substitute problem (Section 7.1) smooth stress solutions can be
achieved. Otherwise, also with classical finite elements the multiphase concept leads to defec-
tive jumps in tractions along an material interface. Subsequently, some examples are introduced
to test the proposed method in the Sections 7.3 to 7.6 and a final discussion of the overall error
is found in Section 7.7.
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 p(x) 

x  interface 

multiphase finite element 

(a) 
(b) 

Fig. 7.4: Bar system with material discontinuity and finite element discretizations

7.3 Example: one-dimensional multiphase B-spline finite elements

A one-dimensional example of a bar with material discontinuity is presented. The system
corresponds to that of Fig. 7.4. The load function is p(x) = 1

40
x− 0.5. The length of the bar is

100 cm. Section area is constant at 5 cm2. A material discontinuity is located at the center of
the bar at x = 50 cm. The Young’s modulus of the left half (0 ≤ x < 50 cm) is E1 = 3000 kN

cm2

and that of the right half (50 < x ≤ 100 cm) is E2 = 6000 kN
cm2 . The problem is analyzed by

B-spline finite elements of order k = 2 in two variants. In the first example the bar is modeled
by six B-spline finite elements. Three left of the material discontinuity obtain the parameter E1

and three of the right parameter E2 (Fig. 7.4(a)). In the second example the bar is modeled by
seven finite elements (Fig. 7.4(b)). The three left most and right most B-spline finite elements
are assigned to the parameters E1 and E2, respectively. In the center there is a multiphase
B-spline finite element based on a linear material transition function from E1 to E2. The results
of this example are shown in Fig. 7.5. In the variant of the multiphase element, it is visible
that the stress solution is continuous and less deviating from the exact solution. Here, the exact
solutions correspond to the original problem (Fig. 7.5, left) and to the transformed problem
(Fig. 7.5, right).

 

u* 

u 

ε* 

σ* 

σ 

ε 

 

u* 

u 

ε* 

σ* 
σ 

ε 

Fig. 7.5: Analytical solutions and finite element solutions, marked by ∗, for B-spline finite elements (left) and
multiphase B-spline finite elements (right) for a loaded one-dimensional tension bar with material discontinuity
(left) and linear material transition within one finite element (right) in terms of displacement u (magnified by factor
100), strain ε (magnified by factor 1000) and stress σ.
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Fig. 7.6: Two-dimensional solid with circular inclusion
under uniaxial stress px=10 (B=H=128, D=8).

(a)  (b)  (c)  

Fig. 7.7: Pixel models labeled as (a) Model 1,
(b) Model 2 and (c) Model 3.

7.4 Example: Elastic circular inclusion in a matrix based on plain grid discretization

According to the provided theory on multiphase finite elements, an example of an elastic cir-
cular inclusion is introduced (Fig. 7.6). The inclusion and the matrix material are isotropic. The
Young’s modulus of the matrix is Ematrix = 100000 and of the inclusion is Einclusion = 200000.
The Poisson’s ratio of both materials is νmatrix = νinclusion = 0.2. The images of various grid dis-
cretizations of the spherical inclusions are shown in Fig. 7.7. The continuous material field,
namely in the Young’s modulus, is achieved by simple averaging of nodal values as illustrated
in Figs. 7.8 and 7.9.

This example provides a basic study of the proposed method with respect to the mechanical
analysis of materials with several inclusions as e.g. in concrete or other comparable heteroge-
neous solids. It is well suitable as the analytical solution for a circular inclusion in an infinite
plate is available. It originates from Muskhelishvili, 1952, and is documented in [12]. In this
example a ratio 16 : 1 of plate dimension (B,H , in Fig. 7.6) to the diameter of the inclusion
(D in Fig. 7.6) is assumed to be an acceptable approximation to which the analytical solu-
tion fits. It is therefore regarded as reference solution to this example. Here, it shall only be
noted that analytically the stress state within the inclusion is constant, e.g. for this example the
stresses are σxx = 825

68
≈ 12.132 and σyy = 25

68
≈ 0.3676. The analytical solution of stress σxx is

shown in Fig. 7.11. The finite element solution of Model 2 with usual bilinear finite elements
or, equivalent, B-spline finite elements of order k = 1 is shown in Fig. 7.10. In its compari-
son to the analytical solution it is visible by the naked eye that this finite element solution is

22

Fig. 7.8: Isometric view on Young’s modulus of two-
dim. solid with grid discretization of circular inclusion

22

Fig. 7.9: Continuous Young’s modulus by averaging of
nodal values shown in Fig. 7.8
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Fig. 7.10: Stress σxx of model in Fig. 7.8 by classical
bilinear finite elements

Fig. 7.11: Analytical solution of stress σxx for system
of circular inclusion (Fig. 7.6)

 

Fig. 7.12: Stress σxx of model in Fig. 7.8 by B-spline
finite elements of order k=2

Fig. 7.13: Stress σxx of model in Fig. 7.9 by multiphase
B-spline finite elements of order k=2

severely defective along the grid-based material interface approximation. The same effect is
observed for B-spline finite elements of order k = 2 (Fig. 7.12). However, the application of
multiphase B-spline finite elements of order k = 2 in combination with the transformed model
of Fig. 7.9 leads to an essentially improved solution5 (Fig. 7.13). As expected the solution of
stress is continuous according to the theory of the substitute problem (Section 7.1).

For a qualitative comparison of the discretization by multiphase B-spline finite elements of
order k = 2 to the analytical solution with respect to variable resolution (Model 1 to 3) two
sections are selected as illustrated in Fig. 7.6, labeled as sections 1-1 and 2-2. All Figs. 7.14 to
7.17 show that principally the correct dimension in the stresses is matched6.

From Model 1 to Model 3 a slight improvement in accuracy can be seen in stress σxx of
Fig. 7.14. The evaluation of stress σxx of Fig. 7.15 is less clear. On one hand there is an im-
provement in accuracy with respect to the minimum and on the other hand inaccuracies develop
at the edges of the center plane. A clear conclusion can not be drawn about the improvement of
quality from Model 1 to Model 3.

Fig. 7.16 shows that with increasing resolution the peaks in stress σyy are approximated
better. However, the development of stress σyy in Fig. 7.17 with increasing resolution of the
model is more difficult to interpret. There are parts of improved and worse approximation.

Nevertheless, the major conclusion of this example is that principally the multiphase finite
elements in combination with the transformed problem lead to reasonable results. This is a
relevant improvement with respect to plain grid discretization where the stresses are severely
defective. Therefore this example presents that the basic idea works in principle. But the con-
sidered variants did not lead to a clear conclusion how these models can further be improved.
Therefore this aspect will be highlighted in further examples.

5It is noted that for this diagram only the stress in the corners of the elements are evaluated. A more detailed
evaluation will be shown in the next example.

6Only values at the corners of the elements are evaluated and interconnected linear.
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Fig. 7.14: Stress σxx of section 1-1
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Fig. 7.15: Stress σxx of section 2-2
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Fig. 7.16: Stress σyy of section 1-1
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Fig. 7.17: Stress σyy of section 2-2

7.5 Example: Elastic spherical inclusion in a matrix based on mapping of geometry

This example is mostly identical to the prior example. The only, but essential difference is
the effective description of the circle on the finite element mesh. In the foregoing example, first
a plain grid discretization was generated where one finite element either belongs to the inclusion
or to the matrix (Fig. 7.8). Then the material model was smoothed by averaging of nodal values
(Fig. 7.9). The isolines which correspond to Model 2 (Fig. 7.9) are shown in Fig. 7.18(a). As
an improved option the circular inclusion and a circular transition function (compare to Ω5) are

 

(a) (b) 

Fig. 7.18: Isolines of material transition function of (a) model in Fig.7.9, (b) based on mapping of material function
on element centers with subsequent interpolation at nodes.
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(c) 

(b) 

(a) 

Fig. 7.19: Stress σxx, multiphase B-spline finite elements of order (a) k = 2, (b) k = 3 and (c) k = 3, finer mesh.

mapped onto the centers of the elements, first. Then, the material properties of the nodes are
computed as the averages of the neighboring element centers. This leads to a quite improved
topology of material properties (Fig. 7.18(b)). It is interesting to note that this indirect method
apparently leads to a more accurate geometrical representation than the direct mapping on the
nodes with subsequent bilinear averaging within the finite elements (without illustration).

However, it is clear that some geometrical error is induced by any of these procedures which
needs to be distinguished from the inherent approximation quality of multiphase B-spline finite
elements. Therefore in this example the circle and the transition function are exactly mapped
onto the integration points of the finite elements. This is only possible if an analytical description
of the inclusion is available such as in this case of a circle. However, for other inclusion shapes
such analytical functions are available as well [5]. The number of integration points is increased
by 2 with respect to one dimension to cover the heterogeneous material within the finite element.

The basic aspect of this example is to analyze if an increase of element number (h-method)
or element order k (p-method) leads to improved results and shows clear convergence.
Figure 7.19(a) shows the solution of stress σxx for multiphase B-splines of order k = 2. In
Figure 7.19(b) the order of the elements is k = 3. With a C2-continuous material transition
function and C2-continuous B-spline finite elements this stress solution is not only C0-, but
C1-continuous (in contrast to Fig. 7.19(a)). It appears smoother, but some defective oscillations
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(a) (b) (c) 

Fig. 7.20: Stress σxx as in Fig. 7.19, but magnified and with element grid (a to c correspond).

are obvious. Halving the mesh size leads to the result of Fig. 7.19(c).
Qualitatively, this result is essentially improved. The increase of order k had less visible

effect. Therefore it is supposed that the h-version is more effective than the p-version for the
heterogenous case (in contrast to the homogeneous case, Section 6.7). As the major conclusion
of this example, it is noted that multiphase B-spline finite elements offer a reasonable alternative
in modeling heterogeneous materials. The required element number appears reasonable too. The
element resolution of Fig. 7.19 is shown in Fig. 7.20. For an effective use and best knowledge
of this method further studies are performed.

7.6 Example: Uniaxial stress case of one material transition

The focus of this example is the exact analysis of the defect in the stress solution for one
material transition according to Figure 7.21. It is a one-dimensional example but was computed
by the two-dimensional implementation. The Poisson’s ratio is set to zero for both materials.
The parameter study includes a variation of material transition functions as is shown in Fig. 7.22.
The linear function only generates a C0-continuous transition. The continuity which results
from the cubic function is C1 and that of the quintic function is C2. The material functions will

x 

y 

1 1 

B/2 B/2 

D 

px px 
material transition 

H/2 

H/2 

m
at

er
ia

l 1
 

m
at

er
ia

l 2
 

Fig. 7.21: Two-dimensional solid with one material
transition zone, px = 1 N

mm2 , B=H=128mm, D=16mm.
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Fig. 7.22: Various material transition functions for the
system of Fig. 7.21
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be directly mapped onto the integration points of the finite elements. Furthermore a variation of
element number and variation of element order k is examined. The finite element results will
be analyzed in terms of error in stress and error in energy in comparison to the exact analytical
solution.

The exact solution to this problem is σxx = 1 N
mm2 in the whole domain. Figs. 7.23 to 7.25

show the multiphase B-spline finite element solutions for a linear transition, a cubic transition
and a quintic transition, respectively. Here, element size is constant h = 4mm. The varying
parameter is the order k of applied B-spline shape functions. Figure 7.23 shows a comparatively
good solution for k = 2 and a change for the worse for k = 3. This can be explained as B-splines
of order k = 3 are C2-continuous while due to the linear transition function the exact solution to
this problem in terms of displacement is only C1-continuous. This leads to the significant peaks
in the solution at the x-coordinates x =−8 and x = 8. Further increase of B-spline order k does
not cure this defect. Figure 7.24 shows a better solution in stress for k = 3 than for k = 2. The
foregoing effect only occurs for k = 4, but is less severe. Again, a further increase of order k
does not lead to convergence.

Figure 7.25 is only included to find out if a further increase of continuity in the material
transition function would essentially increase the possible approximation quality with respect
to an increase of k. In fact, then a relative good solution is achieved for k = 5, but the effect does
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Fig. 7.23: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s modulus and
varying order k of B-Spline finite elements.
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Fig. 7.24: Stress σxx in finite elements of Section 1-1 for C1-continuous cubic transition of Young’s modulus and
varying order k of B-Spline finite elements.
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Fig. 7.25: Stress σxx in finite elements of Section 1-1 for C2-continuous quintic transition of Young’s modulus and
varying order k of B-Spline finite elements.

not appear to be relevant. Concluding, for best approximation of material transitions, multiphase
B-spline finite elements of order k = 2 or k = 3 are proposed, as no further improvement can be
expected for an increase of k (while the p-version was much more effective for homogeneous
problems).

The Figures 7.26 to 7.28 deal with the h-version, namely a change of element number mea-
sured in terms of element size h. Fig. 7.26 shows the combination of a linear transition function
and B-splines shape functions of order k = 2. The stress σxx converges very effectively with
decreasing mesh size. Same effect is observed for the linear transition function and k = 3 in
Fig. 7.27. Even the discussed defect at x =−8 and x = 8 decreases, which would not have been
clear without this study, but it appears to converge less effectively.

As a further study the combination of cubic transition and k = 3 is shown in Fig. 7.28.
Without the defect the problem appears to converge even faster then for a linear transition and
k = 2 with respect to decreasing mesh size h.

As the major conclusion, it is quite obvious that the h-version is much more effective in
modeling heterogeneous materials than the p-version. Best results are achieved for simple linear
transitions in combination with B-spline functions of order k = 2. This supports the statement
that a grid-based model with simple bilinear mapping functions is reasonable and a higher-order
mapping function will not necessarily lead to essentially improved answers. Only exception is a
cubic transition function in combination with B-splines of order k = 3. But then it is expected,
that in fact the cubic transition function needs to be exactly mapped which is not easy to assure

0,94
0,95
0,96
0,97
0,98
0,99
1,00
1,01
1,02
1,03
1,04
1,05
1,06
1,07
1,08
1,09
1,10

-64 -56 -48 -40 -32 -24 -16 -8 0 8 16 24 32 40 48 56 64
x-Coordinate [mm]

h=8

h=4

h=2

h=1
Stress 
[N/mm²]

Fig. 7.26: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s modulus,
order k=2 and varying size h of B-Spline finite elements.
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Fig. 7.27: Stress σxx in finite elements of Section 1-1 for C0-continuous linear transition of Young’s modulus,
order k=3 and varying size h of B-Spline finite elements.
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Fig. 7.28: Stress σxx in finite elements of Section 1-1 for C1-continuous cubic transition of Young’s modulus, order
k=3 and varying size h of B-Spline finite elements.

for arbitrary geometries of grid-based models. As a further conclusion it is noted that the dimen-
sion of error in all examples is within the acceptable tolerance of a few percent error in stress
or essentially below. Again, therefore the method is principally valid to model heterogeneous
problems.

In all cases multiphase B-spline finite elements of order k = 1 lead to significantly worse
results which is only summarized in the following final summaries of error in stress and energy
in form of Figs. 7.29 to 7.32. Fig. 7.29 summarizes the maximum error of stress in the p-version
and Fig. 7.30 that in the h-version. Similar trends in the error of energy are observed for the
p-version and h-version in Figs. 7.31 and 7.32, respectively. It is quite interesting to evaluate
the convergence rates of error energy from Fig. 7.32 as assembled in Table 2 and compare them
to those of the homogeneous problem.

Error(2h) / Error(h)
h = 4s h = 2s h = 1s

Linear Transition, k = 2 18.041 19.016 18.575
Linear Transition, k = 3 6.2506 7.8595 7.9919
Cubic Transition, k = 2 10.332 20.836 20.213
Cubic Transition, k = 3 107.54 175.00 -

Table 2: Convergence rates of error energy as in Fig. 7.32 and assignment of first row to Fig. 7.26, second row to
Fig. 7.27, third row without illustration and fourth row to Fig. 7.28
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Fig. 7.29: Maximum error of stress in p-version
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Fig. 7.30: Maximum error of stress in h-version
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Fig. 7.31: Energy error in p-version
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Fig. 7.32: Energy error in h-version

7.7 Overall error estimation

Several examples showed that the presented multiphase B-spline finite elements can be ap-
plied to the mechanical analysis of heterogeneous materials and in the h-version lead to good
convergence of stress and system energy. These elements were especially designed to reduce
severely defective stresses along interfaces of grid-based models. However, therefore a sub-
stitute problem was introduced (Section 7.1), which already includes an error in advance. For
an accurate assessment of the proposed method, the overall error is considered. This also al-
lows to identify effectively optimal parameter combinations. The following sources of error are
considered:

Geometrical error The geometrical error refers to any difference between the heterogeneous
material geometry of the original problem and that of the finite element problem. Such a
difference can have several reasons such as e.g. imprecise geometrical data of the mater-
ial, the representation by a grid model or the the introduction of a substitute problem (Sec-
tion 7.1).

Discretization error The discretization error denotes the classical approximation error which
results of the finite functional space of the finite elements. This error evaluates the ade-
quacy of shape functions in the approximation of the exact solution of the posed problem.
It is important to note that the discretization refers to the posed problem, which might
differ from the intended problem, e.g. by the geometrical error.

Numerical error The term numerical error summarizes several possible error sources. These
errors can result from the limited computational precision or from user-defined tolerances
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such as in the iterative solution process of the linear equation system. In any case it needs
to be assured that the numerical error is essentially below the geometrical error and the
discretization error.

In [6] the common basis of error in energy appeared to be most reasonable to compare
different sources of error. However, in this context the effect on the stress solution is of relevant
interest. In the following the overall error, or effective error, includes the geometrical error and
the discretization error. The numerical error is negligible.

The overall error is estimated with regard to the example of one material transition of Sec-
tion 7.6. The linear material transition is considered in combination with multiphase B-spline
finite elements of order k = 2. The size of the material transitions zone st (D in Fig. 7.21) is
variable. Only some assumptions allow for a comparison of geometrical and discretization er-
ror. The geometrical error only depends on st of the substitute problem. The geometry is exactly
mapped onto the elements which are based on a sufficient number of integration points. If st = 0
the geometry corresponds to the original problem (compare to Section 7.3).

In example of Section 7.6 the analytical stress solution of the substitute problem corresponds
to that of the original problem. However, the effective stiffness is changed due to the material
transition zone. This can be expressed in error of potential energy. A relative error of the stress
is assigned to the square root of relative error of energy. This is an assumption which presumes
that the error of stress due to the geometrical error is equally distributed over the domain. The
discretization error causes local defects in the stress solution. It follows that an equally distrib-
uted error and a maximum local error are of different character. However, Figs. 7.33 and 7.34
illustrate the relationship of these errors where the effective error is the sum of geometrical error
and discretization error.
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Fig. 7.33: Effective error of energy
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Fig. 7.34: Effective maximum error of stress

With respect to the relative error of energy the introduction of a material transition zone
(st > 0) is always disadvantageous. However, the dimension of the relative geometrical error of
0.5% at st = 8 in Fig. 7.33 is comparatively low and tolerable. The errors in stress according to
Fig. 7.34 are essentially decreased by introduction of the material transition zone in contrast to
the original problem (st = 0). For size h = 4 of elements the lowest effective error is achieved
for st = 8, for h = 1 it is st = 4. Also in the effective error of stress the proposed method
converges with decreasing mesh size h but less fast as the pure discretization error. However,
this is a successful result of the introduced substitute problem. It is highlighted that the number
of degrees of freedom connected to a specific mesh size h (h = 1 or h = 4) in Fig. 7.34 remains
unchanged.

35



8 CONCLUSIONS

This paper provides transparent access to B-spline finite elements by simple one-dimensional
examples which are comprehensible by hand calculation. Two-dimensional B-spline finite ele-
ments are developed which are of variable order k. In a complex homogeneous problem these
elements achieve exemplary convergence rates. They are highly accurate, as tested up to the
order k = 5. Even with respect to the variable order k, only a few element stiffness matrices
are required to create and solve the global finite element problem on a uniform grid. By the
use of iterative solvers a global stiffness matrix needs not to be stored such that the memory
demand can be reduced to a minimum of essentially required vectors. Moreover, the presented
element-based modelling on uniform grids is ideally suited for an effective use of the multigrid
method.

The multiphase finite element concept extends the B-spline finite elements of variable order k
to their application in the mechanical analysis of heterogeneous solids. Several advantages of
grid-based modelling are maintained such that the extension to three-dimensional modelling of
heterogeneous solids remains straightforward. The geometrical description of different phases
within the material is independent of the finite element mesh. Surfaces of the phases need not
to be defined as usually required in aligned meshing. The geometry can originate from pixel
models or exact mapping of material functions within the finite elements. As an essential key,
an original problem with material discontinuities is replaced by a substitute problem with con-
tinuous material approximations. The errors of stress and energy are analyzed with respect to
B-spline order k, element size h, as well as type of material transition function and size st of
material transition zone. Therefore best parameter combinations of this method can be identi-
fied.

In contrast to homogeneous materials where an increase of B-spline order k is optimal
(p-version), for heterogeneous materials convergence is almost only achieved by refining the
mesh (h-version). Apart from the considerate use of cubic B-spline finite elements for hetero-
geneous materials, bilinear material transition functions in combination with quadratic B-spline
finite elements appear optimal and robust. An ideal size of the material transition zone is approx-
imately assigned to the size of two to four elements (2h to 4h). Finally, the effective error, as
sum of discretization error and geometrical error, from the substitute problem is estimated. Also
for the effective error the substitute problem leads to a successful trade-off. While the effective
energy error only slightly increases, severe errors in the stress solution effectivly decrease by
an essential magnitude. Although the effective error of stress converges less fast than the pure
discretization error within the substitute problem, the presented method establishes a substan-
tial improvement for grid-based modelling. Therefore multiphase B-spline finite elements are
proposed as novel alternative in the mechanical analysis of heterogeneous solids.
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